((a^2)/(a-4))+((2a+8)/(4-a))

Simple and best practice solution for ((a^2)/(a-4))+((2a+8)/(4-a)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((a^2)/(a-4))+((2a+8)/(4-a)) equation:


D( a )

a-4 = 0

4-a = 0

a-4 = 0

a-4 = 0

a-4 = 0 // + 4

a = 4

4-a = 0

4-a = 0

4-a = 0 // - 4

-a = -4 // * -1

a = 4

a in (-oo:4) U (4:+oo)

(a^2)/(a-4)+(2*a+8)/(4-a) = 0

(a^2*(4-a))/((a-4)*(4-a))+((2*a+8)*(a-4))/((a-4)*(4-a)) = 0

a^2*(4-a)+(2*a+8)*(a-4) = 0

6*a^2-a^3-32 = 0

6*a^2-a^3-32 = 0

6*a^2-a^3-32 = 0

{ 1, -1, 2, -2, 4, -4, 8, -8, 16, -16, 32, -32 }

1

a = 1

6*a^2-a^3-32 = -27

1

-1

a = -1

6*a^2-a^3-32 = -25

-1

2

a = 2

6*a^2-a^3-32 = -16

2

-2

a = -2

6*a^2-a^3-32 = 0

-2

a+2

8*a-a^2-16

6*a^2-a^3-32

a+2

a^3+2*a^2

8*a^2-32

-8*a^2-16*a

-16*a-32

16*a+32

0

8*a-a^2-16 = 0

DELTA = 8^2-(-16*(-1)*4)

DELTA = 0

a = -8/(-1*2)

a = 4 or a = 4

a in { 4, 4, -2}

(a-4)^2*(a+2) = 0

((a-4)^2*(a+2))/((a-4)*(4-a)) = 0

((a-4)^2*(a+2))/((a-4)*(4-a)) = 0 // * (a-4)*(4-a)

(a-4)^2*(a+2) = 0

( a+2 )

a+2 = 0 // - 2

a = -2

( a-4 )

a-4 = 0 // + 4

a = 4

a in { 4}

a = -2

See similar equations:

| 2d+8=20 | | -9+5k=-69 | | -6m+6=-30 | | 3a+3=-33 | | -5b+6=-34 | | 7a+2=-61 | | -35x+90=-20x+45 | | C=5/9*(204-32) | | -6a+5=53 | | 4-4t=0 | | -2w+9=-9 | | -3b+3=27 | | -2n+1=-9 | | 6a-4=-52 | | -35x+90=-20+45 | | 4+6t=16 | | -4+2b=18 | | 6d-8=-80 | | 3a+1=-35 | | 2m+6=26 | | 8-7m=-62 | | 9-5w=34 | | -10+3b=14 | | 2-5t=-3 | | -7+5b=53 | | 3k+6=-12 | | 3-2m=3 | | 6k+10=58 | | -4a-7=17 | | -9-2b=-31 | | -9-7m=-93 | | 3t+9=36 |

Equations solver categories